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I

SUMMARY

This is a progress report on research carried out under the
sponsorship of the Air Force Office of Scientific Research under
Grant #AF-AFOSR-71-2078D for the period June 1, 1975 to May 31, 1976.
| The research accomplished during this period, as well as con-
tinuing research, is outlined in Section II. Section III gives the
appropriate references, whereas publications resulting from this
grant during the reporting period are given in Section IV. Publica-
tions by other members of the Center which relate to this research
are given in Section V.

The research carried out during this period can be divided
into six interrelated areas which arise in the study of control
systems, |

1) Linear Multivariable Systems

2) Adaptive Coﬁtrol Systems

3) Bilinear Systems

4) Stochastic Systems

5) Systems that give rise to Bifurcations

6) Systems governed by Ordinary and Functional Differential

Equations.

These research accomplishments are briefly outlined below;
Section II gives a fuller description of tbese results.

Professor Wolovich and his students have studied the problem

of arbitrarily assigning closed loop poles of a linear multivariable




s’stems developing a new method, a generalization of the classical
voot locus method. Studies have also been conducted of the attain-
ment of stable solutions of model matching problems. Wolovich has
recently published a survey of recent contributions made utilizing
the differential operator approach, in contrast to the state-space
approach, in the analysis and synthesis of linear multivariable
systems. |

Professor Pearson and his students have developed a technique,’
based on a modified minimum energy regulator problem, to obtain feed-
back stabiiization of linear time varying differential systems.
Professor Pearson has also developed two methods of parameter identi-
fication for linear differential systems.

Using a development in system identification, Pearson has
developed identification techniques applicable to a class of parameter
adaptive control systems., He has, with a student, studied bilinear
control systems with particular applications to parachute gliding
systems and the pursuit-evasion missile control problem.

Professors Falb and Wolovich have pursued studies of linear
operator feedback for the compensation and control of multiQariable
systems.

Professor Kushner has developed a number of computational
methods and techniques for control problems with diffusion models;
these results are presented in a forthcoming monograph. He has also
continued his study of the application of Monte Carlo methods for the
optimization of constrained noisy systems.

Professor Fleming has recently coauthored a bock on determinis-
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3 tic and stochastic optimal control (1]); he has also studied the

concept of generalized solutions for optimal stochastic control

]

problems.

9 The study of bifurcation problems has been pursued by Pro-
fessor Hale and his students, both from the abstract viewpoiﬂt and
for specific applications, such as the von K&rmidn equations for

2 plates and the Duffing equation for nonlinear oscillations.

3 Professors Banks, Hale and LaSalle have continued their

. studies of systems described by ordinary and functional differential
-} equations. Professor Hale and students have studied the stability

‘ invariance of functional differential equations with respect to
changes in the delays. Professor Banks has studied the problem of

developing approximation techniques for linear, bili-~ear and weakly-

nonlinear systems with delays. Professor LaSalle has pursued studies ;

of vector liapunov functions and of systems of pure difference
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RESEARCH ACCOMPLISHMENTS AND CONTINUING RESEARCH

1. Linear Multivariable Systems

a. Analysis and Synthesis of Linear Multivariable Systems

Professor Wolovich and Mr. Panos Antsaklis, one of his grad-
uate students, have been working on the problem of arbitrarily as-
sia.gning the closed loop poles of a lineaf multivariable system
through the employment of constant gain output feedback. This pro-
blem, which is graphically resolved in the scalar case via the
classical root locus, remains one of the most important unresolved
problems in linear systems theory. Nevertheless, they have succeeded
in identifying a real matrix § whose rank represents a bound on
the maximum number of closed loop poles which can be arbitrarily as-
signed via constant gain output feedback [2]). Furthermore, examples
have been obtained which illustrate that the bound cannot always be
attained, and further investigations are planned in order to gain
additional insight with respect to this question as well as to develop
computational procedures for attaining "as much arbitrary pole place-
ment as possikle".

As a result of their investigations, a new method has been
found [3) for assigning min(n,m+p-1l) closed loop poles using linear
output feedback. Here n is the system order and m and p the
number of inputs and outputs respectively. More specifically, para-
metric expressions of the desired feedback gain matrix H are de-

rived which not only allow the direct assignment of min(n,m+p-1)

- o s
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closed loop poles, but also make possible the "control" of the
remaining unassignable poles. Finally, as a consequence of the
above, an intergsting generalization of a well known scalar result
is presented which ccnstitutes a direct method of assigning min(m,p)
closed loop poles.

A partial resolution of the question of stability of solu-
tions to the minimal design problem has also been obtained in terms
of transfer matrix factorizations employing the new notions of
"common system poles" and "common system zeros" as well as the "fixed
poles” of all solutions and those of minimal solutions [4]. It
should be noted that the minimal design problem is directly related
to the question of designing compensators of lowest possible dynamic
order to achieve well-defined closed loop performance. The results
obtained are employed to more directly resolve questions involving
the attainment of stable solutions to the model matching problem as
well as stable minimal order state observers.

Finally, Professor Wolovich has published a rather inclusive
report [5] which outlines some of the major recent contributions made
utilizing the differential operator approach, rather than the state-
space approach, for the analysis and synthesis of linear multivariable
systems. It might be noted that a differential operator description
of the dynamical behavior of a physical system often follows as a
direct result of employing well known physical laws to describe the
performance of the system, and techniquesa which directly utilize this
description are often more efficient than those which require the

development and employment of equivalent state-space models.
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b. Feedback Stabilization of Linear Systems

New results have been obtained in the feedback stabiliza-
tion of a linear timez-varying differential system [6] by Pearson and
Kwon. The technique arises from a modified minimum energy regulator
problem subject to a terminal constraint on the state. Minimum energy
control problems subject to a terminal constraint on the state have
beeﬁ discussed in the literature ror various missile control problems
and inevitably lead to a singule~ control law in which the feedback
gains are unbounded near the terminal time. Here it is shown that
a certain modification of the control law, which avoids the singular
property, leads to an asymptoticully stable control system. Even
when specialized to the time invariant case, the control law leads
to an extension of some well-known methods for stabilizing time in-
variant systems via the inverse of the controllability Gramian matrix.
Regarding the latter method for stabilizing discrete time systems,
some extensions were obtained this past year which removed the assump-

tion of nonsingularness of the system matrix [7].

c. System Identification

Research in this area by Pearson during the past year has
resulted in two methods of parameter identification for linear dif-
ferential systems which circumvent the need for estimating the system
initial conditions when identification utilizes only input-output
data observed over a finite time interval 0 < t < t; of arbitrary
duratior.. In both methods, unknown disturbances are modeled deter-
ministically by uncontrollable modes and the frequencies present in

the disturbances, but not the initial conditions exciting such modes,
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must be identified along with the system parameters. 1In the first
method, the disturbances are represented implicitly and the fre-
quencies associated with the disturbances must be extracted by a
polynomial factorization of the identified transfer function matrix,
leaving a reduced order model which represents the controllable por-
tion of the system. A short paper describing this method appeared

in [8] and a full-length version, including computer simulation data,
will appear in [9]. 1In the second method, the disturbances are
modeled explicitly and the identification procedure involves determin-
ing the system and disturbance parameters simultaneously based on in-
put-cutput data on the time interval 0 < t < tl. Th. second method,’
which has been reported in [10], is more general than the first in that
the system parameters are allowed to enter nonlinearly into the basic
model. The helicopter example in Section 3 of [10] illustrates tne
importance of this property in that even though the unknown parameters
may enter linearly in the state equations, they will neverthe¢ less
generally enter nonlinearly when the input-output differential equa-
tion is derived. Disturbance parameters always enter nonlinearly with
the system parameters in this method due to the manner by which they
are modeled, i.e., as uncontrollable modes. Computationally, the
first method involves solving linear algebraic (normal) equations for
the unknown parameters, followed by a polynomial factorization routine,
while the second method leads to scalar valued nonlinear algebraic
equatinns. Computer simulations have not yet been carried out for

the =ccond method, but are in the planning stage.
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d. Linear Output Feedback Compensation

In order to represent the dynamical behavior of the
class of system considered, Falb and Wolovich find it convenicnt

to employ a (general) differential operator representation [il] of

the form:

P(D)z(t) = Q(D)u(t); y(t) — R(D)z(t) + W(D)u(t), (1)

where z(t) is a g-vector called the partial state, u(t) is an

m-vector called the input, y(t) is a p-vector called the output,
and P(D), Q(D), R(D) +nd W(D) are polynomial matrices of the
appropriate dimensions in the differential operator D = d/dt with
P(D) g x g and nonsingular. 1In certain instances, it will be more
useful and illuminating to employ certain specialized forms of (1);
i.e., either a controllable differential operator representation

({11},

Po(D)z(t) = u(t); y(t) = R(D)z(t), (1c)

or an observable differential operator representation ([11]),

PQ(D)Z(t) = Q(D)u(t); y(t) = z(t). (o)

It should perhaps be noted that the differential operator repre-
sentation represents an alternative to (actually a generalization

of) a more conventional state-gpace representation of the form:
x(t) = Ax(t) + Bu(t); y(t) = Cx(t) + Eu(t), (2)

where x(t) 1is an n-vector called the state and A,B,C, and E

are real matrices of the appropriate dimensions. In particular,
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we note that (2) represents a special form of (1) with
{p:z-A,B,C,D} = {P(D),Q(D),R(D),W(D)}.

In view of either representation, linear output feedback (lof)

H is defined by the -~ontrol law:
4 u(t) = -Ey(t) + v(t) (3)

R where H = [h14] is an m X p real gain matrix and v(t) is an

’.:\ L4
E

5 m-dimensional external input. It might be noted that since dynamical

¥ elements are not present in (3), lof represents a most practical
¥ form of compensation which is frequently emplofed in the scalar

(single input/output) case. The classical root locus, of course,

TR 3 T

graphically depicts the variation of the poles of a scalar system
A under lof compensation as a single gain varies over prescribed

AQ limits. The implementation simplicity of lof does not, however,
imply a corresponding simplicity of analysis in the multivariable
- case as is well known and documented, due to the nonlinearitiss |
introduced by the cross-coupling terms. Nonetheless, numerous

; investigations ([12}, [13], [l4]), [15], [16]) have been undertaken
¢ in order to provide new insight.regarding this very practical form
% of feedback compensation. The most recent and illuminating of

3 these {[13], [14], [15]) have noted that it is "almost always"

'§ possible to arbitrarily assign min(n,m+p-l) closed loop poles

; via lof. &Earlier examples, however, have been given which show
o .
7 ‘ that m + p - 1 is not generally an upper bound, and very recent

studies ([17] have established a new, more illuminating bound on

the maximum number of poles which can be arbitrarily assigned via




lot. The résults obtained thus far, as weli as proposed extensicns,

will ii6w be delineated. '
In particular, if attention is restricted to the case of

strictly proper systems, i.e., when E =0 in (2) or, equivalently;

when the system transfer matrix:

T(s) = .Cg(sI-A)'lkB) - ('R'(s)p"l'(s)g;(ﬂs)‘ + W(s) = ~B(8,)‘P;l"(s)” - @aii('s)g‘(k’):i (4)

ag derived from {s8), (1), (1e), and (lo), respectiﬁélg.xis~étricfly

proper, it follows that the zeros: of
by (8) & |s1-a+BHC| = |Pp{s)+HR(8) | = lgo;(g)-kg'»(s):ﬂi (5)

represent the poles of af(stéﬁe-space or differential operator):

system compensated by lof. The dependency of the zérc: of AH(S)
on the (pm) gdain elements, hij'
of this part of the proposal, and a variety of questions'related to

of H represents the main focus

lof compensation are proposed for investigation, e.g.
(i) How many zeros of AH(G) can be,arbitggfily assigned
via H? _ /
(ii) Can a system be stabilized via lof?
(iii) What is the minimum oxder of a dynamic compensator .
required to insure complete and arbitrarylpcle placement?
(iv) What gain matrix, H, or set of matrices assigns
certain zeros of AH(s)?
It should be noted that if, as in most earlier investigations,
one were to employ a state-space formulation in order to study the

variation of the zeros of |sI-A+BHC| as a function of the hij'
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then such an investigation would involve the manipulation of more

parameters, namely all of the n(n+m+p) entries of A,B, and C,

USRI,

than necessary. A differential coperator representation of the form
(1c) in comparison, cumpletely describes the dynamical behavior of
an equivalent system with no more than n(mtp) + m2 independent

terms, a computational savings of at least n2 - m2 terms. The

et ek praman m——

computational efficiency associated with the differentia} operator
approach manifests itself in many aspects of linear system analysis
and synthesis, an observation which will be more tﬁoroughly illus-
trated in our subsequent discussions.

Let us now be specific regarding the progress made thus far
regarding our differential operator investigation of lof compensation

and proposed extens’‘sns. To begin, =w: note that in view of (5),

R(s)
by(s) = [(H 1) ]l. (€)
P (s)

or, in view of the Binet-Cauchy formula ([18]), AH(s) can be ex-

pressed via the relation:

l 2 ees MM R(S) jl j2 soe jm

QJS)= o ¥ . M1 ' , (7)
15315325..3n;pwp 33 3y eee Iy PR(s) 1 2... m
il iz'ooo irr th
where- the notation G 3 'j j‘ + denotes theiappropriate m™ order
l 2 L 2K 2N ) m
minor of G. In other words, in view of (7), AH(s)'= IPR(s)+HR(s)| c

can be expressed as the sum of g 4 [m+p] = [m+p} products of the

m P

—— ——
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th

m- " order minors of [H I} and the appropriate mth

order minors of

R(s) . This, in turn, implies that A, {s) - A(s), where
Pp(s) H

A(s) = |Pp(s)| = |si~A|, can be expressed as the inner product

An(s) - A(S) = MHIMRP ’ ‘ ('8)

where My represents ‘a g~1 dimensional row vector consisting of
individual and product elements of the hij; and Mpp represents a

corresponding column vector consisting of all of the g mth order

minors of [?(TL{] except A(s) = |PR(s)|; We further observe that
R .

MRP can be expressed as the product:

=

[}

o
ves W

(9)

n-1l

0

for some known real '(gél)xn matrix &, which can be obtained from
either T(s) or (as shown) its factorization, R(s)P;l(s). The
polynomials which comprise MRP or, equivalently, the matrix
defined by (9) play a role.in llnear system theory which has yet to

be fully investigated.+ Tc indicate some proyress which has been

*a pcrtion of the proposed work will address this more general question,
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made regarding lof, however, we first define w as the rauk 6f Q;

i.e.
w d ora1, (10) .

and Y as the minimum of w and mp, where mp represents the number

of independent gain elements, h,., of H: i.e.

ij
A .
Y = min(w,mp). (11)

In terms of these definitions, the following result can be formally

established ([17]).

Theorem l: No more than Y zexos of AH(s) can be arbitrarily

assigned via H.

It should be notgd that vy represents a new and illuminating
upper bound on the (maximum) number of poles which can be arbitrarily
assigned via lof, one which exceeds m + p - 1 (see [13] and [1L4)
in particular) in a large number of casgs.. This result, of course,
does not represent an end in itself but rather a basis for further
investigations. In particular, the question of whether or not it
is possible to "usually" assign y zeros of AH(s) ovbitrarily is
not resolved by Theorem l. Further investigations have revealed that

in certain cases it is possible while in other cases it is not. To

(3 2]
illustrate, if T(s) = 1 J [ J[: ] = R(s)P"Y(s),
s +1

o
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then Q=1 0:0 1 0|, a rank 4(= w) matrix. In this example,
10 0 01
=1 0 1 0]

mp = 4 as well, so that y = 4, Although Y = 4, it can be shown
thaé-if is impossible to come "“arbitrarily close" to certain sets éf
closed loop poles; i.e., if Au(s) =a, + @)8 + coe + a3s3 + s4 then .
tpe condit}on (ao+a2)2 < 8(“o+“i“3'“i) would necessitate the employment

of certain complex gain elements hij' The details associated with

this observation will soon appe&r in {171. On the other hand,
Example 8.2.6 in [ll] represents anothef fourth order, two input, two
output systems for which y = 4 and complete and arbitrary pole
placement via lof is "almost always" possible.

It thus follows, in view of the above, that while the condition
Yy = n is necessary, it is not sufficient to insure comple;e and
arbitrary pole placemen£ for "almost all" séts of closed loop poles.
Nevertheless, the approach taken to define Q and ¥y is a novel one
which has offered, and should continue to provide, significant new
insight regarding lof compensation. It is proposed, therefore, that
additicnal investigations be conducted with thé eventual goal of
obtaining sufficient conditions for "almost always" arbitrarily
assigning all n poles of a lof closed loop system when ¥ = n.
It is felt that certain structural properties of the matrix  will

play an important role in eventually resolving this, as well as other

related questions.
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o established that when <y < n, constraint conditions on the co-
i

efficients of Au(s) can be obtained via (8) independent of the

hij' Investigations are .proposed, utilizing these conditions, which

will resolve qugstions related to lof stabilization in such cases as

well as those cases when Y = n; but complete and arbitrary pole

placement is not possible (as in the initial example).
Investigations are also underway and proposed‘regarding the

employment of dynamic compensation in combination with lof when

Y < n but more design flexibility is desired. In particular, it

now appears that the observability index associated with the single
M
Tty will

represent a measure of the minimum order of a dynamic compensator

input/multiple output system with transfer matrix

required for complete and arbitrary pole placement, although further

investigations are required to formalize this observation. To

proposed in this section is to develop practical low order lof

compensators for the control of multivariable systems..

2. Adaptive Control '

The formulation of the second method for parameter identifi-
cation described by Pearson in 1lc. above has aiso been shown in Section
4 of [10) to apply to a particular class of parameter adaptive control

problems. This class pertains to those feedback control systems in

which the unknown plant parameters, w, can be dichotomized into two
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sub-vectors, Va and Wy, i.e., w= (wa,wb), in which the

vector w, has a relatively more important affect on the stability
of the feedback system than Wy, . For example, W), may contain

the parameters for external additive disturbances, modeled a3 un-
controllable modes, such as wind gust effects, which do not influence
the absolute stability of the feedback system, but would lead to
erroneous parameter adaptation if ignored in the formulation. The
controller portion of the basic feedback control system is assumed
to have been structured with sufficient flexibility so that there
exists an invertible function T between w, and the controller
parameters o, i.e., a* = P(wa), corresponding to which the
desired stability and steady state error criteria aré upheld uni-
formly ia Wy when a = a* = P(wa). With these basic assumptions,
this class of parameter adaptive control problems is shown in [10]

to be amenable to the same generic formulation as the second method
for parameter identification discussed above. Also, sufficient
conditions for the uniqueness of solutions to the nonlinear algebraic

equations have been obtained in [10].

3. Control of Bilinear Systems

Various results relating to the control of bilinear systems
have emerged in a forthcoming Ph.D. dissertation of Wei ([19] under
the direction of Pearson. First, it is shown how various nonlinear
systems with trigonometric nonlinearities can be re-defined as a
bilinear system through a suitable transformation of state variables.,

Specific examples of sucu systems are given in relation to a para-
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chute gliding system and a pursuit-evasion missile control system.

Next, the existence and uniqueness of solutions to a class of minimum

energy control problems for commutative bilinear systems is shown
resulting from the discovery that the optimal control is a constant
vector determined by thn boundary conditions. Appiications of this
result are obtained for the bursuit—evasion missile control problem
which falls irto the aforemertioned class under the assumption that
the line speed of the pursuer missile can be controlled in addition
to the turn rate. A suboptimal control law is obtained for this
class of problems when higher order (actuator) dynamics are included
in the model. Simulation studies for the 2 dimensional pursuit-
evasion missile control problem have been carried out which include
first order actuator dynamics and a least squares estimation al-
gorithm for the target speed and relative heading, in addition to
the control algorithm derived for the minimum energy interception

problem,

4, Stochastic Control

a. Computational Methods for Control Problems with

Diffusion Models

Kushner completed a monograph [20] on the subject, and the
preface, describing it in more detail, follows. The monograph deals
with a family of interesting and useful techniques for approximating
(for computational and other purposes) a large class of optimal
stochastic control problems, by simpler optimal stochastic control
problems. It also develops a theory and technique for approxlmatlng

many types of functionals of diffusions that are of 1nterest all

through contrpl and communication theory.

Ii-14
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.This book deals with a number of problems.concerning approxi-
mations, convergence and numerical methods for stochastic control
problems, and also for degenerate elliptic and parabolic equations.
The techniques that are developed seem to haQé a broader
applicability in'stochaspic control theory.. In order to illustrate
this, in Chapter 11 we give a rather hatural approach to the formula-
tion and proof of the separation theorem of stochastic control
theory, which is more'general than. the current aéproaches in
several respects.,

Th: ideas of the book concern a number of interesting
techniques for approximatiné (cost or performance) functionals of
diffusions and optimally controlled diffusions, and for approximat-
ing the actual diffusion process, defined by stochastic differential
equations of the It8 type, both controlled and uncontrolled. Since
many of the functionals that we seek to compute or approximate are
actually weak solutions of the partial differential equations
(i.e., the weak solution can be represented as a functional of an
associated diffusion), the techniques for approximating the weak
solutions are closely related to the techniques for approximating
the diffusions and their functionals. Also, the form of the partial
differential equation which is (at least formally) satisfied by a
functional of interest, actually suggests numerical methods for the
probabilistic or control problem,

We develop numerical méthods for optiﬁal stochastic control

theory, and prove the required convergence theorems. Neither for
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this, nor for any of the other problems, do we require that the
cost or optimal cost functions be smooth, or satisfy any particular
partial differential equation in any particular-sense. Nor do we
require, a-priori, that the optimal control exist. Existence is a
by product of our method. The numerical techniques are intuitively
reasonable, admit of many variations and extensions, and seem to
yield good numerical results, i
The main mathematical techniques are those related to the

use of results'in the theory of weak convergence of a sequence of
probability measures. The tgchnique seems to.provide a point of
view which not only suggests numerical methods, but alsc unites
diverse problems in approximation theory and in stochastic control
theory. The ideas of weak convergence theory are being used more
and more frequently in various areas of applications. But this
book, and previous papers by the author and some of his students,
seem to be the only currently available works dealing with
’applications to stochastic control theory or to numerical analysis.
The proofs are purely probabilistic. Even when dealing with
numerical methods for partial differential equations, we make no

explicit smoothness assumptions, and use only probabilistic methods
and assumptions.

Chapter I discusses some of the necessary probabilistic
background, including such topics as the Wiener process, Markov
processes, martingales, stochastic. integrals, It3's Lemma and
stochastic differential equations., It is assumed, however, that

the reader has some familiarity with the measure theoretic
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foundations of probability. In Chapter 2, we describe the basic

ideas and results in weak convergence theory, at least in so far

as they are needed in the rest of the book..

The computational methods of the book are all equivalent
to methods for computing fuactionals of finite Markov chains, or
‘for computing optimal control policies for control problems with
Markov chain models. Many efficient computational techniques are
available for these probléms. In particular, the functiocnals for
the uncontrolled Markov chains are all solutions to finite linear
algebraic equations. The Markov chain can arise roughly as
follows. We start with the partial differertial equation which,
at least, formally, is satisfied by a functional of the diffusion,
and apply a particular finite difference approximation to it; 1f
the approximation is chosen carefully (but in a rather natural
way), then the finite difference equation is actually the equation
that is satisfied by a furctional of a particular Markov chain,
and we can immediately get the transition probabilities for the
chain from the coefficients in the finite difference equation.
The local properties of this chain are very c;ose to the local
properti2s of the diffusion, in the sense that there is a natural
time scaling with which we interpolate the chain into a continuous
parameter process, and the local properties of the interpolation
and diffusion are close in certain important respects. Also, the
functional of the Markov chain, which is the solution to the
approximatinc equation, is similar in form to a "kiemann sum"
approximation to the original functional of the diffusion.

At this point, the theory of weak convergence comes in, and
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_we show that the functional of the chain does indeed converge to

the desired functional of the diffusion, as the difference
intervals go to zero. Similarly, the approximation to the weak
sense solution ‘to the partial differential equation converges to
the weak sense solution. The interpolation of the chain also

converges (in a suitable sense) to a solution to the stochastic

differential equation. Of course, the finite difference algorithm .

is classical., But, neither the convergence r.oofs nor the
conditions for convergence are classical. Also, the metﬁod can
handle a much broader class of functionals than those that may
possibly éolve some partial differential equation.

It is not necessary that we use finite difference methods;
their use does, however, yield an .automatic way of generating a
family of approximating chains, whether or nét the functional is
smooth, However, many types of approximations are'usable,
provided only that they yield the correct limiting properties .
Indeed, this versgtility is one of the sﬁrong points of the
approach.

Approximating with Markov chains (whether or not we use .
classical finite difference techniques) allows us to use our
physical intuition - to guide us in the choice of a chain, or in
the selection of a computational procedure for solving the
equation for the functional of the chain. Our sense of the

"dynamics" of the process plays a useful role and can assist

‘us in the selection of procedures which converge faster.

In the case of the optimal control problem, we start by

T




approximating the non-linear (Bellman) partial differential

‘equation, which is formlly satisfied by the minimal ccst function.

are just the dynamic programming equations for the minimal cost
function for the optimal control of a certain Markov chain.
Again, there are many types of useful approximating chains. This
non-linear partial differential equation, or optimal control,
case is much more difficult than the uncontrolled or linear partiaf
differential equation case. 'However, the ideas of weak convergence
theory, again, play a very useful role. Under broad conditions,
we can show that the sequence of optimal costs for the contro’led
chain converge to the optimal cost for the controlled diffusion.
Indeed, it can even be shown that the (suitably interpolated)
chians converge, in a particular sense, to an optimally controlled
diffusion.

In Chapter 3, we give the required background concernipg,
the equations satisfied by various functionals of Markov chains,
both controlled and uncontrolled. Our method is able to tréat
optimal control problems with various types of state space
constraints. 'However, this often requires a linear programming
(rather than a dynamic programming) formulation, and this is 1ilso
discussed in Chapter 3.

Chapter 4 discusses the relations between diffusion processes
and elliptic and parabolic partial differential equations, both
non~degenerate and degenerate and linear and non-iinear. Proofs are

not given. The representation of the solutions of the linear

With a suitable choice of the approximation, the discrete equations

St A, oot W R .
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equations in terms of path functiorals of the diffusion is discussed,
as well as the relation between certain non-linear equations and
optimal stochastic control problems. Chapter 5 is an introduction
to the techniques and results of the sequel. 1In order to'illustréte
some of the simpler ideas, the techniques of weak convergence theory
are ayolied to a simple two point boundary value problem for a

second order differential equation.

In Chapter 6, we begin the systematic exploitation and
development of the ideas. The motivation for the types of approxi-
mations is given, and the approximation of a variety of functionals
of uncontrolled diffusion and linear elliptic equations is treated.
We also show how to approximate an invariant measure of the
diffusion, by an invariant measure of an approximating chain,.and
discuss the use of the approximations for Monte-Carlo, and give
some numerical data. The approximations that are explicitly
discussed are derived by starting with finite difference techniques ;
all of them yield Markov chain approximations to the diffusion.
However, it should be clear, from the development, thét many other
methods of approximatior can be handled by the same basic techniques.
The general approach taken here should motivate and suggest other
methods with perhaps preferable properties for specific problems.

Chapter 7 deals with the parabolic equﬁtion, and with the
probabilistic approach to approximation and convergence for explicit
and implicit (and combined) methods. Furthermore, approximations
to a (currently much studied) class of non-linear filtering problems

are discussed. Some numerical data, concerning approximations to
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an invariant measure, is given.

In Chapter 8, we begin the study of non-linear partvial
differential equations and approximations to optimal control
problems, in particular to the optimal stopping and impulsive
control problems. The discretizations of the optimization problems:
| for the diffusion yield similar optimization problems on the
? approximating Markov chains. We are able to prove that the
approximations to the optimal processes and cost functions
actually converge to the. optimal processes and cost functions,
resp. The study of non-linear partial differential equations
and optimal control problems continues in Chapter 9, where a
variety of approximations and control problems are discussed.

In oxder to show that the limiting cost functionals are truly
minimal (over some specified class of control policies), and that
the limiting processes have the probabilisitc propertics of the
optimally controllec diffusion, a number of techniques are

developed for approximating arbitrary controls, and for proving

admissibility or existence. It is expected that many aspects of

the general approach will be quite useful in other areas of

stochastic control theory. Additional numerical daté.appears in

Chagters 8 and 9. Again, it must be emphasized that much more work

"
4
7

needs to be¢ done ~ to investigate various types of approximations

- in order to =~ fully understand which types of approximations are

AR ALEEE s

preferable, and why.

In Chapter ld, we treat two types of extensions of the ideas in

Chapters 6 and 7. First, approximations to stochastic differential

difference equations, and to path functionals of
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such processes, are developed. Then, we discuss the problem of
diffusions which are reflected from a boundary, and the corres-
ponding partial differential equations with mixed Neumann and
Dirichlet boundary conditions.

Hopefully, the book will help open the door wider to an
interesting direction of research in stochastic control theory.
Similar techniques can be applied to the problem where the stochas-
tic differential equation has a 'jump term", and the partial dif-

'é ferential equations are replaced by partial differential integral

equations.

b. Sequential Monte Carlo Methods for Optimizing Con-

strained Noisy Control Systems

Kushner has continued his investigations [21,22] into
the above subjecc¢, which has numerous applications in systems op-
timization. The subje<t is the Monte Carlo version of nonlinear
programming. The resuits this year were of two types. First, a

rather extensive series of computer investigations is underway -

concerning the numerical properties of algorithms that were theo-

retically analyzed last year. Algorithms were of several types,

for equality constraints only, Lagrangian methods for inequality
2 penalty - Lagrangian methods for inequality constraints,
constraints,/and several types of 'pseudo projection' methods. The
k. purpose of the investigation is to gain a thorough understanding
- of the advantages, shortcomings, numerical properties, etc., of the

algorithms - to enable us to improve and develop them. The resulés,

sc far, have been extremely good; it appears that the algorithms
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are both interesting and useful, and we are well on the way to
understanding their numerical properties.

The second type of effort concerned the theoretical proper-
ties of the algorithms themselves. Typically, various restrictive
conditions were put on the coefficient sequences (such as square
summability), and the observation noises were assumed to be un-
correlated. Using some rather powerful ideas in the theory of
weak convergence of measures, Kushner has proved the convergence

theorems under substantially weaker and more practical conditions.

c. Generalized Solutions in Optimal Stochastic Control

In a paper on generalized solutions in uptimal stochastic
control [23], Fleming discusses two xinds of such solutions. The
first kind is introduced to deal with lack of a Filippov-type con-
vexity condition, much as in'ordinary (deterministic) optimal control
theory. Results about the existence of an optimum are obtained for
stochastic problems in'which the data-fields available to the con-
troller do not vary with the control chosen. In particular, these
results apply to open loop problems and to problems with completely
observed system states. For the latter class of problems, it is
noted that the method of dynamic programming frequently gives an
ordinary (non-generalized) feedback s..ution without assuming any
convexity conditions.

A difficult open question is the question of existence of
optimal controls for stochastic problems with partially observed

system states. A second kind of generalized solution is introduced
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as a step toward dealing with this matter. Following Benes, Davis-

Varaiya, and Bismut, the problem is reformulated as one of finding
a Gersanov density whose integral with respact to wiener measure
on the space § of possible systeﬁ trajectories is optimized. In
case of pastially observed states, the set A of densities corres- ‘
ponding to ordinary controls is neither weakly closed nor convex,

in the space Lz(ﬂ) of square integrable densities. Generalized
controls correspond to points of the weak closure B of the convex
hull of A.

A partial characterizatior of points of B is obtained,

in terms of auxi.liary randomizations.

5. Bifurcation Theory

Hale has continued his wori on nonlinear oscillations and bi-

furcation theory. Chow, Hale and Mallet-Paret [24, 25] have given

a general theory of bifurcation for families of mappings which
depend on two parameters A,u. The complete bifurcation picture is
obtained for A,u var&ing independently in a neighborhood of scme
point. Applications have been given to the von Karman equations

for a rectangular plate and thin shells with lateral loading and

normal loading.

In his thesis directed by Hale, List [26) considers the

above parameters as well as an additional one concerned with the

shape of the plate.
28].

Other applications are contained in Hale {27,

Hale and Rodrigues [29] have been discussing the classical

forced Duffing equation with and without damping and have been
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attempting to characterize the behavior of the periodic solutions

as a function of the parameters and allowing the parameters to
vary independently. Surprisingly, no one has given the bifurcation
diagram for this egimple equation. The discussion requires an ex-

tension of the methods previously mentioned above.

6. Control of Systems Governed by Ordinary and Functional

Differential Equations

a. Functional Differential Equations: Stability and

Periodic Solutions

Hale has continued to develop the general theory of func- .
tional differential equations both of retarded and neutral type:.
In the area of stability, he has given a rather complete descrip-
tion of the behavior near a constant solution [30]. This theory
gives a description of the center manifold theorem as well as prac-
tical methods of determining stability in critical cases. The
Hopf bifurcation theorém for ordinary differential equations can
also be generalized by using these results. In the development of
this theory, a special transformation was devised which permits one
to obtain a vector field on the center mar.fold. This transformation
has proved to be very useful in the study of combined sets of dif-
ferential-difference and difference equatior.s which occur often in
the theory of gas dynamics and transmission lines (see ([311]).

For equations of neutral type, some very interesting and
important problems on the stability of difference equations have

arisen. For example, consider the difference equation,
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x(t) = kzl A x(t-1,),

where each r, > 0 and each A, is an n x n matrix. If this
equation is stable for one set of values (rl,...,rN), is it also
stable for values close to these? The answer in general is no.
Hale [32] has shown that if stability is preserved, tﬁen the
equation must be stable for all values of (rl,...ru). In his
thesis supervised by Hale, Silkowskii [33]) has given necessary and
sufficient conditions for phis type of stability to hold.

Silkowskii [33] has also given a method easier to apply
than Pontryagin for obtaining the stability of solutions of linear
differential-difference equations with constant coefficients. Tsen,
under the direction of Infante, is continuing to work on these im-
portant stability questions.

Many theoretical results on fixed points of mappings have
arisen because of the discussion of the existence of periodic orbits
of periodic dissipative systems (see, for example, Hale and Lopes
[34], Chow and Hale [35], Hale [36]). These results were applied
by Lopes [37] to equations of neutral type. The results also have
implications on uniformly ultimate boundedness and the basic definitions

of stability (see the forthcoming book of Hale [38]).

b. Optimal Control of Systems with Delays: Approximation

Techniques for Linear, Bilinear, and Weakly Nonlinear Systems

Banks has continued his investigation of approximation

methods for optimal control problems governed by autonomous functicnal




differential equations. During the past year, he has completed

a rather extensive stndy for linear systems of both theoretical
and numerical aspects of a method based on use of "averaging”
approximations formulated in the context of a framework that is

a modification of the one detailed in {39]. The numerical results
(which substantiate theoretical findings that this method is indeed
a good one for a large class of linear system problems) are re-
ported in [40]. In that report a generous supply of examples (in-
cluding some involving systems such as those modeling a harmonic
oscillator with delayed damping or delayed restoring force) were
solved both analytically (using the necessary and sufficient condi-
tions for optimal control of delay systems - developed previously
by Banks among others), and numerically (via the "averaging"
approximation techniques) and the solut.ions compared.

A modification (which allows the treatment of a larger class
of approximation techniques within t1ie context of the framework) of
the conceptual framework in [39] along with new theoretical results
for the "averaging" approximation methods were developed in [41] for

optimal control problems with (n-vector) system equations

. \) o .
x(t) = ) A;x(t=h,) + j D(s)x(t+s)ds + Bu(t), t e [0,t;] (1)
i=0 -X

where 0 = ho < h1 < oo ¢ hv < r. Briefly, this approximation
technique involves solving a sequence of control problems governed
by the vector ordinary differential equations (which are approxima-

tions to (1))
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R,

Wit) = AW (t) + col(Bult),0,...,0)

where wN is a vector in RP(N+1), Ay is the n(N+l) square
matrix (taking v =1 in (1))
(2 a¥ N A+ | «
0 1 """ n-1 19y
N N
-r-I -r-I 0\\ ““““““““““ ?
\\ |
\‘ {
< {
AN = o~. N1 N T~ ;
§ ~ r\\ >~ ~
l \\‘ \\ ~ \\ ‘
! ~ ~ \\ S . \0 o
! \\ RN ~\s
) ~ ~ ~
~ N N
0"—'-—-— — -._.--_.\__\0 \s-'I \\-‘-I .
L r J
Here I is the n X n identity matrix and
N -(j-i)
d. = J N D(S)ds ’ j = 1,2,...,N.
7 g
N

In [41]) there is also given a thorough discussion of the relation

of our results to a number of heuristic (and, in some cases, in-
correct) uses of similar higher-order ODE approximation ideas for

FDE found in the engineering literature during the past 8-10 years.
Our analysis has yielded precise convergence results along with

error estimates (see {42])). In addition, Banks has recently succeeded

in extending some of these approximation ideas to treat certain pro-
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blems with nonlinear systems of the form:
x(t) = Lix.) + £(x(t),x ,ult)), te [0,t]. (2)

Here L is the same linear operator (on Xy where xt(e) =

x(t+8), -r < 6 < 0) as given in the right side of (1) above. Ex-
amples of systems which are included in the extended theory for (2)

are bilinear control problems of a somewhat standard type arising

in applications and nonlinear systems of the type currently under
investigation in models for protein synthesis. .Details of these
results along with a discussion of these models can be found in [42]. .

Work on extensions of these ideas to other nonlinear problems is

continuing.

¢. Vector Liapunov Functions and Stability Thecry of

Ordinary Differential Eguations

Following ideas that first appeared in [43] and [44],
LaSalle corrected a result in [43] in formalizing an idea due to
the economist Arrow for-the construction of a Liapunov function
from a number of scalar functions, none of which need be a Liapunov
function. Arrow did not express his idea in these terms. This can
be viewed as a vector Liapunov. LaSalle has further studied the
idea of vector Liapunov functions and used them to investigate and
obtain new results on global asymptotic stability (see [45]). This
more Jeneral ide . of a vector Liapunov function, which arose quite
naturally in economics, should be useful in deriving certain *ypes

of control laws. This has not yet been ‘explored.
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The deeper knowledge that we now have of the invariance
properties of the limit sets of the solutions of ordinary differen-
tial and difference equations in the nonautonomous case increases

in importance a type of theorem due originally to Yoshizawa and

later modified by LaSalle. The theorem has to do with the set E

associated with a Liapunov function. The application of the never

invariance results requires a further improvement in Yoshizawa's

result. By extending the concept of a Liapunov function for non-

autonomous systems, LaSalle has given a newer version of Yoshizawa's

theorem. The conditions imposed are weaker than those of Artstein

and also include a recent result given by Onuchic e: al in [46].
These results of LaSalle and some new sufficient conditions for

asymptotic stability and instability can be found in [47] and [48].

From time to time during the past 5 years LaSalle has thought
a great deal about the problem of the stability of feedback struc-
tures for the implementation of optimal control without much success.
It is clear that in the absence of perturbaticns there can be an

infinity of feedback structures, all of which give the same optimal

performance. Which of these is in some sense the "best" or, at least,

possess some stability under perturbations? This is the practical

problem engineer's solve in building real systems. It should be

possible to develop a general theory and to discover some general

principles. We have in the past proposed studying this problem.

LaSalle has done so but, as was said above, without success. The

few simple examples where the problem can be solved are too trivial

to be helpful in finding a suitable mathematical formulation of the

o
oL e Grehaiar A




(N S G

AR

Ot P
SUEL T e

II-31

general problem. They do, however, show that, even for ordinary
differential equations, the available feedback structures (those
that are physically realizable) immediately take one beyond ordinary
differential equations, and this is the difficulty. One idea here
is to study the problem for discrete systems but this would seem to
reguire first a further development of the theory of discrete pro-

cesses.

d. Difference Equations

Important mathematical models are derived from the ob-
servation at discrete times of continuous processes. Most of the
data in many real problems of process control is available only at
discrete times. LaSalle has noted that, taking a general point of
view of a continuous process (general enough to include all the
usual mathematical models -=-ordinary and functional differential
equations, etc.) the observed discrete process is equivalent to a
system of difference equations on the state space, which may or may
not be finite dimensional. The discrete observation of processes
generated by ordinary differential equations yield what engineers
call "sampled data systems". Diflerence equations, even in the
finite dimensional case, reflect aspects of reality not covered oy
ordinary differential equations. Not every finite dimensional system
of difference equations can be generated by the discrete observation
of a system of ordinary differential equations. That this is so is
easily seen from the fact that there is in existence and uniqueness

of solutions of difference equations only in the forward direction
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of time -- two different past histories can lead to the same state
but from then on the solution is unique. This is expected when-
ever there are delayed effects in the dynamics of the system.

Much of what we have learned recently about differential
equations and dynamical systems has not been applied to the study
of these simple, but practically important, discrete models. For
this reason LaSalle began last summer a study of discrete processes
and hés obtained a number of new results in tne theory of difference
equations. For example, LaSalle has done for nonautonomous difference
equations what Artstein (see the Appendix by Artsteiin in [49] did
for nonautonomous ordinary differential equationg in the stuuay of
limiting equations and invariance properties. This has enabled him
to extend the earlier work of Hurt in [50] in applying the invariance
principle to extend Liapunov's direct method. An exposition ol some
of these results can be found in [49] and [51]. LaSalle is writing,
and has partially completed, a hook giving a modern treatment of the
theory of difference equations (discrete processes) with emphasis on

their stability.
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